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APPLICATION OF ASYMPTOTIC METHODS OF THE THEORY OF NONLINEAR OSCILLATIONS TO WAVE 
PROPAGATION IN AN INHOMOGENEOUS MEDIUM 

I. F. Budagyan and D. I. Mirovitskii 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol, 7, No. 6, pp. 807-87, 1966 

Application of the method given in [1] for solving the wave propa- 
gation problem in inhomogeneons media with nonmonotonic and oscil- 
lating dependence of the wave number on position is discussed. 
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The method described earlier in [1] involves a transformation from 
the equation ~" + kZ~ = 0 for the resultant field r = a +  g in an inho- 
mogeneous medium with k = k(x) to equations written in terms of the 
amplitude and phase of the direct partial wave a(x) = A(x) e i~  x) with 
subsequent change of variable x -~ A. The application of the asymp- 
totic method of the theory of nonlinear oscillations [2, 3], which re- 
duces to the determination of phase trajectories on the phase plane, 
then enables us to solve the resulting differential equation. The change 
of variable A--* x is performed at the end. The direct (a) and reverse 

(8) partial waves, the resultant field ~, and the function k = k(x) are 
determined by the form of the chosen function k = k(A). This method 
enables us to consider media in which the wave number increases or 
decreases monotonically with distance, varies nonmonotonieally, or 
oscillates with constant or variable period and amplitude, i.e., its 
range of validity is not restricted to any definite class of inhomoge- 
neous media, and its accuracy depends only on the accuracy of the 
corresponding graphical constructions or numerical calculations. 

w TRANSFORMATION FROM GIVEN LAW k = k(x) TO k = k(A) 

The direct problem of the theory of wave propagation can be re- 
duced to the determination of the field ~ in an inhomogeneous medium 
k = k(x). The choice of the function k = k(A) is quite readily carried 
out on the basis of the function k = k(x)characterizing agiven inhomo- 
geneous medium. In fact, consider the main relations which are nec- 
essary for the sointion of the problem of wave propagation, and the 
resulting functional relations between k(x) and A(x), A(x) and F(A), 
and F(A) and k(A). It will be shown that these relations can be used 
to find the particular function k = k(A) which leads to the given law 

k = k(x). 
(a) There are two possible relationships between the given law k = 

= k(x) and the auxiliary function A = A(x) that are determined by the 
form of the function k = k(A). This is clearly shown by, for example, 
Fig. 1. When the character of the function A = A(x) is the same as 
that of k = k(x), the function k(A) increases monotonically along the 

OA axis. If the over-all behavior of A = A(x) is opposite to that of the 
given function k = k(x), the function k(A) decreases monotonically 
along the OA axis, and the function A = A(x) has an arbitrary shape, 
as shown in Fig. la,  then the values A = 1, 0, 1 correspond to x = 0, 
2, 4. These values of A, in turn, correspond to wave numbers k = 
= 0.45, 0.25, 0.45. Thus, the law k = k(x) corresponds to the function 

A = A(x) in its over-all variation along the x-axis. 

When the function k(A) decreases monotonically along the OA axis, 
we have the opposite situation shown in Fig. lb. Here, the minima of 
the k = k(x) curve correspond to the maxima of the A = A(x) curve, 
and regions where the k = k(x) cuzve falls (or rises) correspond to the 
rise (or fali) of the function A = A(x). Consequently, in this case, the 
over-all character of the function k = k(x) is opposite to that of A = 
= A(x). 

For a nonmonotonic function k(A), for example, in the case of a 

periodic form of this function, the phase plane splits into a number of 

independent regions, each having its own solution corresponding to a 

particular wave number variation k = k(x). In each such independent 

region the function k(A) varies monotonically and, consequently, this 

case reduces to the first or second variant of the relationship between 

k = k(x) and A = A(x) which we have just discussed, depending on the 

ehazacter of the function k(A). 

(b) The relation between A = A(x) and F = F(A) follows from the 

definition of the function E = dA/dx given in [i]. Transformation to 

the curve F = F(A) is achieved by differentiating A(x), i.e., by finding 

dA/dx and introducing the function x = x(A) obtained from the curve 

A = A(x). Thus, for the symmetric layer which is widely used in the 

theory of radiowave propagation (in estimating the effect of the iono- 

sphere on radio communications) and in quantum mechanics (tunnel 

effect), we have 

A (z) = N - -  4Me x(x'-e) [1 -~ eY(X"c)] -s , (1.1) 

for which 

dA 
: i-- 4MTeX(X'-C) [l e Y(x'-c) ] [i + e~(~-~)l -a, (1.2) dx 

and if we determine the function e 7(x-c) from Eq. (1.1), and substitute 

it into Eq. (1.2), we can readily show that 

P (A) = i 7  (N - - A )  [M -1 (M - -  N-} -  A)] %. (1.3) 

This leads to the symmetric (relative to the OA axis) curve given 
by Eq. (1.37, which cuts the OA axis at the points A = N - M and A = 
= N; at the first of these points the tangent is parallel to the OF axis 

(see Figs. 2, 1). 

"T/- 'x .... G,  
oF: . . . . .  

a , :  - ~ 0 l , a  

�9 0 a q§ 0 M N 

Fig. 2 

Similarly, we can find the function F = E(A) for A = A(x) given by 

the following formulas: 

A(z )  = a +  b sin (x --  c), F* b ~ - ( . 4 -  a) s (1.4) 
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A (:c) = a § b s i n d ( : c - - c ) ~  

F ~ = (bd) ~ [1 -- b -~ (A --  a)=l, (1.5) 

(1.6) 

arc tg [(N - -  A )  (A - -  M)-*I '1' = 

.4 ' /~ = [ ( A - -  M) ( N - - ) l  - -  ( x - -  c), 

F ~ = (A -- M) (N -- A)-I; 

A(z )  = a z +  b, f = a ,  (1.7) 

A (x) = (ax + 3) t/', F =*/2 a A  -~, (1.8) 

A (x) = In (ax + b), .F = a exp (--A) , (1.9) 

A(x)  = a (x - -  c) 2 .-]- b, F ~ = 4 a (A  - -  b).  (1.10) 

Hence it follows that for the sinusoidal function of Eq. (1.4), plotted 
on the Ax plane, we obtain on the ~hase plane FAa  circle of radius 
b, which is located symmetrically relative to the OA axis with the 
center at a distance a from the origin. The sinusoidaI function given 
by Eq. (1.5) with the variable period (x - c) = 2~rd -~, on the other 
hand, produces an ellipse in the FA plane. The inverted cycloid on 
the Ax plane corresponds to the curve of Eq. (1.6) on the phase plane 
with a vertical asymptote at the point A = N, which is symmetric re- 
lative to the OA axis and cuts it vertically at A = M. The straight line 
gq. (1.7) corresponds on the FA plane to a straight line parallel to the 
OA axis. The function given by Eq. (t.8), which was discussed in [1], 
leads ~o an exponential, and the parabola of Eq. (1.10) leads to a pa- 
rabola which is symmetric relative to the OA axis and cuts it at the 
point A = b. These remits are ilinstrated in Figs. 2 and 8. 
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(c) The relation between the the functions F = F(A) and k = k(A) is 
established by the differential Eq. (2.5) in [lj and, therefore, for any 
function k = k(A) we can readily construct the corresponding curves 
F = F(A) on the phase plane (all the formulas in [1] to which we shall 
refer will henceforth be indicated by an asterisk to distinguish them 
from the formulas in the present paper). The use of the equation of 
the iimiting trajectory, given by Eq. (3.2"), wilt help us to establish 
the character of the function k = k(x), since the shape of the phase 
trajectories, i. e. ,  the curves F = F(A), is in a certain definite corre- 

spondence with the shape of the limiting trajectory, and the phase 
trajectories cut the OA axis vertically in the phase plane with the ex- 
ception of singular points at which fz = k(A) + 2k(A)A "l = 0. The case 
of several singular points on the phase plane, or their occupation of 
the entire OA axis, is encountered only in certain special problems. 

To construct the curves F = F(A)inthe neighborhoods of singular points, 
we must carry out an additional analysis or use the complete Eq. (2.5*) 

instead of gq. (3.2"). 
As an example, consider the function k(A) = A -m, In accordance 

with Eqs. (2.1"), (2.6"), (2.7'::), and (2.8*) we have 

t - -  m 2 - -  m (2 -- m) (l -- m) 
p ( A ) -  A ] J - -  Am_  1 , ] 2 ~  An_ m ", 

Equation (2.5*) will therefore assume the form 

d F  F f 2 - -  m ] d-7=-X L 0 - ,~)  + ~ ~J ,  

(I - -  m) f~  
G.= i @ A~(i_m ) , (1.11) 

and the equation for the limiting trajectory (3.2 '~) will be 

F = A l - * n ( m  -- I)-'/L 

Singular points occur at m = 2 (in this case, ~l = 0 along the entire 
OA axis). This case is considered in detail in [1], where it is shown 
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that the limiting trajectory on the phase plane is an equilateral hy- 
perbola. In the remaining cases, i. e.,  for m > 2, there are no singular 
points since fl does not vanish for any A. Integration of Eq. (1.11) gives 
the following equation for the phase trajectories: 

aA4(1 -m) (2A ra _ aA ~) 
F"- (A) ~ (t - -  m) (aA  ~"-m - -  t) ~ (1.12) 

In particular, for m = 3 we can write 

F ( A ) = - ~ x  = ++. a - -  A (a__  A)  A 2 

a /  
o .% A ..< -~). (1.1a) 

In contrast to phase trajectories, the limiting trajectories retain their 
form between m = 2 and m= 4. For m > 2 the phase trajectories 
cut the OA axis vextically since f~ e 0 [see the F : F(A) curve based on 
Eq. (i.13) and given in Fig. Ibj. The corresponding function A = A(x) 

can be found by Writting Eq. (1.13) in the form 

i A  2 (a - -  A )  d.A = [a ('l~a - -  A)l~/~dx , 

and integrating 

T Tt ~ - c = = k -  V'; 

where c is the displacement of the curve A = A(x) along the x axis, 
and g = (a/2) -- A. 

If the differential 

kk'" - -  2(k') ~ --  A F  -~ (A)  k~k * = 0, (1.14) 

obtained from Eq. (3.2*) for the limiting trajectory with allowance 
for (2.1"), has an exact solution, then the function k = k(A) corres- 
ponding to the phase trajectory F = F(A) is immediately determined. 
tn fact, for ease (b) of Section 1 we find for Eq. (1.10) that F 2 = 4aA 

when b = 0, and Eq. (1.14) assumes the form 

ka 
kk" -- 2 @.)2 _ -~a k' = O. (1.15) 
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The solut ion of (1.15) g ives  an equat ion  which de ,e rmines  the  function 
k = k(A), i . e . ,  

(4ab) -1 In [bk-1 (A) + (4a)-~l - -  k -1 (A) = B (,4 - - D )  

where B and D are in tegra t ion  constants.  

Figure l a  shows a plot  of k = k(A) corresponding to the chosen func- 

t ion (1.10) for A = A(x), and for the  improved law k = k(x). It is as- 
sumed in this plot  that  a = 1/4,  c = 2, D = 2, and B = 1. 
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Thus, to de t e rmine  the  function k = k(A) corresponding to F = F(A) 

of the necessary form, we must  use the equa t ion  for the  l i m i t i n g  t r a -  

jectory,  in tegra te  i t  ( i f  possible), or use i t  to construct  the "es t imated"  

l imi t ing  t ra jec tor ies .  The phase t ra jec tor ies  approx ima te ly  repeat  the 

form of the l i m i t i n g  t ra jec tor ies  and cut the OA axis ve r t i ca l ly  every-  
where except  for the s ingular  points. 

w MAIN RESULTS OF ANALYSIS OF MORE COMPLICATED CASES 

To solve the problem of wave propagat ion in a m e d i u m  wi th  an ar-  

bitrary k = k(x) we must first d e t e r m i n e  the corresponding form of the 

phase t ra jectory and choose k = k(A) so that  i t  ensures that  this  pa r t i c -  

ular t ra jectory is obta ined.  The method of [1] is then  used to obtain by 

a g raph ica l  construction (or n u m e r i c a l  ca lcu la t ion)  the precise  form of 

k = k(x). Since in p r ac t i c a l  appl ica t ions  there  is usual ly  no need to 

follow successively a l l  the  various constructions lead ing  to the "best" 
form of k = k(x), we find at this s tage the ac tua l  solution, i . e . ,  the  

functions p = ~(x), a = c~(x), and ~3 = 3(x) for the "best" form of k = 

= k(x) .  

In the most  comp l i ca t ed  case of propagat ion,  i. e . ,  an osc i l l a t ing  

function k ; k(x), le t  us consider case b of Sec t ion  1 and, in par t icular ,  

Eqs, (1.4), (1.5), and (1.6).  It follows from Fig.  2 tha t  the phase t ra -  

jector ies  corresponding to k = k(x) and A = A(x) in the form of an in-  

verted cyclo id  have  a ve r t i ca l  asymptote  for F--* ~ and cut the OA 

axis v e r t i c a l l y .  Sinusoidal  functions k = k(x)  and A = A(x) correspond 

to closed phase t ra jec tor ies  of e l l i p t i c a l  form, loca ted  s y m m e t r i c a l l y  

r e l a t ive  to the OA axis and shifted by an amount  a from the origin 

along the OA axis.  The shift a is equal  to the  d i sp l acemen t  of the A = 

= A(x) curve on the Ax p lane  in the ve r t i ca l  d i rec t ion  (above the x 
axis). The  semiaxis  of the  e l l ipse  ly ing on the  phase p lane  a long  the 

OA axis charac te r izes  Ehe amp l i t ude  of the osc i l la t ions  in A = A(x), 

whi le  the semiaxis  p a r a l l e l  to the OF charac te r i zes  the periods of the 
osc i l la t ions  of A = A(x) and k = k(x). The shift of the osc i l la t ions  of 

A = A(x) a long the x-axis ,  i . e . ,  the  quant i ty  c, is c o m p l e t e l y  de ter -  

mined  by the boundary condit ions,  and is ent i re ly  arbitrary for a g iven  

phase t ra jectory,  s ince i t  is  a constant  of in tegra t ion  during t ransforma-  

t ion from the phase p l a n e  to the Ax plane.  

Closed phase t ra jec tor ies  can exist  only near s ingular  points of f t  

s ince the condi t ion dF/dA = ~ is not sat isf ied for these  points.  There-  

fore, closed phase t ra jec tor ies  (for example ,  e l l i p t i c a l  t ra jector ies)  

on the phase p lane  demand the pressure of s ingular  points, but a l though 

this condi t ion is necessary it is not suff icient .  It follows that,,, in the 

case  of an osc i l l a t ing  wave number,  we must  choose the  function k = 

= k(A) so that  i t  ensures the presence of at  least  one singular  point,  

and then confine our a t ten t ion  to the neighborhood of this point .  

In part icutax,  consider the  case 

k (-4) ~ b + sin (A -}- a) . (2.1) 

According to Eq. (2.1") we then have  

2 dk ( dk ~-~ d ~  
p(A)-- k dA ~77/ ~v = 

2 _L sin (A + a) [b - -  sin (A + a)l (2.2) 
[b + s in  (A + a)] cos (A + a) 

Substi tuting Eq. (2.2) into Eq. (3.2*) for the  l i m i t i n g  t ra jectory,  
we have  

. ( A ) = k ( -  '~ - 

{[sin (A + a) + b]S A cos (A 4- a)} I/' 
{[sin (A + a) - -  b] sin (A + a) - -  2} '/' 

The d i rec t iona l  f ie ld  constructed on the phase p lane  AF splits into a 

number  of regions,  each  of which i s  charac te r i zed  by its own l i m i t i n g  
t ra jectory and can  be ana lyzed  independent ly  of the remain ing  re-  

gions. 

Let us now specify the form of Eq. (2.1), i. e . ,  choose, for example ,  

k (A) = 2 [2 + sin (-4 + t )1 ,  (2.3) 

and denote  by the  ha tched areas those regions of the phase p lane  of Fig. 

4 which correspond to nonpropagat ing waves.  Between these hatched 

regions we have  regions corresponding to propagat ing waves, bounded 

by the l im i t i ng  t ra jec tor ies .  The or ig ina l  funct ion k = k(A) is ind ica ted  

by the dot-dash curve,  and the curves p = p(A)and f l  = f l (A)  are shown 

by the dashed and solid lines, respec t ive ly .  

As an example ,  le t  us ana lyze  the problem for regions 1 and 3 on 

the phase p lan  e. Region 1 extends from the OA axis up to An  = 0.57, 

where k = k(A) has a m a x i m u m ,  and up to At2 = 3, where the  p = p(A) 
curve cuts the hor izon ta l  axis  (p = 0). Region 3 extends from A~r = 

= 6.85, which is shifted along the  OA axis r e l a t i v e  to A n  by 27r, and 

a~2 = 9.3, where,  aga in  p = 0. 
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1, Figure 5a shows region 1 of the phase p lane  of Fig. 4. Let us plot 

on this f igure one of the  phase t ra jec tor ies  F = F(A) and construct on 

the left  the  functions A = A(x) and k = k(x) ( these are shown by the 

solid l ines) .  The dashed l ines  show the functions corresponding to the 

l i m i t i n g  t ra jectory which is ind ica ted  by the dashed curve.  We em-  

phasize  that  a l I  these constructions are g iven  for arbitrary boundary 

condit ions,  and tha t  the shift of the curve  k = k(x) through an arbitrary 

amount  a long the x axis involves  the same shift  for the A = A(x) 

curve.  

2. The r igh t -hand  side of Fig. 5b shows region 3 of the  phase p lane  

of Fig. 4. If we restr ict  our a t t en t ion  to only two phase  t ra jec tor ies  in 

this figure, i t  is suff ic ient  to show only their  upper halves  because  of 

the  symmet ry  of the  phase t ra jec tor ies  r e l a t i v e  to the  OA axis noted 

above.  The centers  of the  t ra jec tor ies  shown by the solid and broken 
l ines co inc ide  with the singular  point  A = 7.65, but the  t ra jec tor ies  

are  shifted somewhat  a long the OA axis and their  shape is near ly  e l l i p -  

t i c a l .  As before (region 1), the funct ion A = A(x) and k = k(x)  for 

both phase t ra jec tor ies  are shown on separate graphs on the l e f t  of Fig. 

5b. 
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Figure 6 shows the analogous constructions for the other special case 
of Eq. (2.1), namely, 

k (A) = 1.5 + sin 0 . 5 A .  (2.4) 

The l imit ing trajectory is shown by the dashed curve onthe phase plane 
on the right-hand side of the figure, while the functions A = A(x) and 

k = k(x) are shown on the left. The function k = R(A) is shown by the 
dot- dash curve. 

it is clear from the above examples that a given function k = k(A) 
can ensure the solution of the wave-propagation problem for a number 
of different types of inhomogeneous media. The function k = k(A) 

must therefore be regarded as the basic function for this asymptotic 
method. 

w 3. EXAMPLE OF THE SOLUTION OF THE WAVE-PROPAGATION 
PROBLEM 

Consider a medium characterized by the basic function 

k (A) = exp (--A) (3.1) 

shown in Fig. 7 by the dot-dash curve. As in case (c) of w to deter- 

mine the phase and l imiting trajectories from Eqs. (2.5*) and (3.2*), 

we must first use Eqs. (2.1"), (2.6*), (2.?*7, and (2.8*) to determine 

the functions 

Using Eqs. (3.2) and (2.6*) for the angle 0 between the tangent to 

the F = F(A) curve and the horizontal axis at any point on the phase 

plane, we obtain 

ggO=F{--I+[~--f@~(I--~A-)e2Af2]X 

• [ I -- ( I -- -~ eUA F=)V2]-I} , (3.3) 

and the equation for the l imit ing trajectory becomes 

iv (A) = ~ ( -  pA-q-'/o = A'/2~ - a  . (3.4) 

It follows from Eq. (3.4) that the l imit ing trajectory has a horizon- 

tal  tangent at the point A = 0.5 on the phase plane. It is shown in Fig. 

7 by the dashed curve. The region corresponding to nonpropagating . 

waves is hatched. In accordance with (8.8), al l  the phase trajectories 
have horizontal tangents at phase-plane points determined by 

A 

_ f - -  [SA - 1 -  3 (1 -{-A'-')] '/' ] 
2 (t -- a/.a A -1) f " (3.8) 

Figure 7 shows the family of phase trajectories obtained from Eqs. (8.3) 

and (3.5) in the unhatched region of the phase plane. 

To be specific, let us select one of the phase trajectories, for exam- 

pie, the one shown by the solid line, and determine the functions A = 

= A(x), k = k(x), and the field ~0 = ~(x). Graphical constructions in- 

volve the transfer (in two stages) of the curve from the phase plane to 

the Ax plane of Fig. 7. First, the curve is transformed from the AF 

set of coordinates to the Ax" set, where the curve F = F(A) transforms 

to x" = x'(A) since x" = dA/dx = F -t. To transform the resulting curve 

(shown dashed on the intermediate  plane Ax') to the Ax plane, we 

must integrate it with respect to A, i. e. ,  keeping OA unaltered, trans- 
form in accordance with the rules of graphical integration from the x" - 

to the x-axis. 

' the correspon ding constructions are shown in Fig. 7. Since integration 

is carried out for arbitrary initiaI conditions we can, in addition to the x = 

= x(A) curve, which is also a graph of k = A(x), obtain a number of other 

curves differing from each Other onlyby the shift along the x-axis. Curves 1 
and 2 of Fig. 8 are shifted relat ive to each other along the x-axis  and are 
shown in the first quadrant, while the basic function k = k(A) is shown 
in the second. The required function k -- k(x) obtained for curves 1 and 
2 by the above method is shown in the fourth quadrant. 

For more complicated inhomogeneous media, for example, for 

k (.4) = b e aA,  ( 3 . 6 )  

we can sti l l  use the results obtained for the simple problem of Eq. (3.1). 
In fact, Eq. (3.1) can be written in the form k(A) = be aA, where a = 
= -1  and b = 1. Therefore, if we construct a graph of A = A(x) with, 

for example, a = -1,  b = 2, then, in accordance with recommenda- 

tions of Section 3d of [1], it is sufficient to transform the graphs for 

Eq. (3.1) only slightly. All  that is necessary is to compress the curves 
of the first quadrant in Fig. 8 along the horizontal direction by a fac- 

tor of 2 and retain the scale along the vert ical  direction. Consequently, 

in the fourth quadrant we must compress the corresponding curves along 

the horizontal axis by a factor of 2 and expand them by the same fac- 

tor along the vert ical  axis. Curves 1 and 2 which are obtained as 
a result of this transformation are shown in Fig. 93. 

Similarly, if the basic function is 

k(A) = 2e -DsA, (3.7) 

i. e., ifa = -0.5, b = 2, the graphs of A = A(x) and k = k(x) of Fig. 8 

must be compressed along the horizontaI axis and expanded along the 

vertical axis (by a factor of two). The resulting curves are shown in 

Fig. 9b. 

If we now wish to obtain the resultant field ?(x) in the inhomoge- 

neous medium, we must determine the particular solution Yt exp i'F i 

of Eq. (0.I*) corresponding to Eq. (3.i). This means that we must first 

plot a graph of ~o = @(A) on the AOq~ plane found by integrating the 

curve ~o" = dcp(A)/dA obtained in accordance with Eq. (2.9*): 

~p(A) , [k(A)]~]% [ t 1 1 % .  
~ ' = t - 7 - - •  = (F~)  ~ (3.8) 

The in i t ia l  conditions are taken into account in Eq. (1.1") by suitably 

choosing the integration constants Cr and C2, and the equations of 
(2.11"7 are used to calcuIate the parameters 

i '/, t N (A)  = ~ -  - -  i .  
M ( A ) =  (FeA.)2 Fe a. , 

Equation (2.12") is used after the change of variable A ---~ x, shown 
in Fig. 1% to determine the functions Y, = Yl(x) and `)r = Vt(x) �9 

The resultant field in the inhomogeneons medium of Eq. (8.1) is 

described by Eq. (1.1"), and ineludes in addition to Yz(x) and x~t(x ) the 
further functions Y2(x) and `)2(x). The latter functions are found by 

constructing with the aid of Eq. (2.14") the graphs of R r = RI(A ) and 

Ra = R2 (A), followed by integration of these graphs with respect to A, 
and the determination of ~l(A) and Iz(A). The functions Yz = Yz(A) 

and ~z = ~2(A) calculated from Eq. (2.18") after the change of variable 

k--" x are shown in Fig. i0. 

The solution of the problem defined by (3.1) is thus given by the 

graphs of Yt = Yt(x), ~i = ~l(x), Yz = Y2(x) and ')2 = 'l~2(x), shown in 
Fig. i0, which describe the general solution of Eq. (0.i*) 

(ee) = Yle s~r, tO r + C~Y~e-i~q. 

This is the resultant field in the inhomogeneous medium with k = k(x) 

characterized by curve 1 of Fig. 8. 

It was shown in [1] that the wave-propagation problem can also be 

solved by the above asymptotic method in a purely analytic form. The 

necessary transformations (change of variable and integration) are then 
carried out numerically on a computer and not graphically.  The use 

of the graphical constructions in the present paper was dictated by the 

desire to exhibit more directly the general features of this method of 
solution. 

In conclusion, we note the following facts: 

l ,  The process of solution of the above problems by the asymptotic 

method does not involve any assumptions such as, for example, those 
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employed in the short-wave or long-wave approximations. The accu- 
racy of the method is governed only by errors introduced during the 
intermediate transformations. The solution of the wave-propagation 
problem for an arbitrary inhomogeneous medium can therefore be 
carried out by this method to any given accuracy not only for the field 
~(x), but also for the partial waves c4x) and ~x) [4], and the internal 
reflection coefficient P.(x) = 5(x)cCl(x). 

2. The above explains the complexity of the method which is, in 
fact, an accurate numerical method. It is therefore more difficult to 
use it to sotve the propagation problem for inhomogeneous media than 
certain other special methods which are effective only for a particular 
class of media (weakly inhomogeneous, finely stratified with a sinus- 
oidal dependence of wave numbe~ on distance, and so on). However, 
in the case of more complicated media characterized, for example. 
by an oscillating variation of the wave number with distance (includ- 
ing variable amplitude and period), the present method has definite 
advantages as compared with other existing methods. 

8. In view of its generality, the asymptotic method is useful in 
finding the solution for inhomogeneous media k = k(x) for which exist- 
ing methods have not resulted in a solution. Since the three stages of 

solution in [1] are the same for all types of medium, we can use the 
same program to solve the propagation problem for different classes of 
complicated inhomogeneous media using digital computers, and this 
also simplifies the corresponding work for analog computers. 
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